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FOREWORD

This report was originally issued under the designation
&f OAR Technical Report #5, and contains the results of research
on the problem of the calculation of oscillatory lift and moment
coefficients which act on a two-dimensional airfoil moving at
subsonic speeds. The work was begun and partly completed while
the author was associated with the Dynamics Branch of the Air-
craft Laboratory, Wright Air Development Center, under E. 0. 459-4.
The author, who was also the project engineer, completed the re-
search while a member of the Applied Mathematics Research Section
of the Flight Research Laboratory, Wright Air Development Center.
The new edition is being issued for the purpose of correcting
numerous errors in the original, as well as meeting the demand
for additional copies.

The author wishes to acknowledge the assistance of Mr. Hewitt
S. Toney, then of the Dynamics Branch, Aircraft Laboratory, and
presently of the Computation Research Section, of the Flight Re-
search Laboratory, in developing many of the formulae and in
carrying out the numerical calculations.
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ABSTRACT

The present report explains and illustrates a method
of computing the non-stationary forces and moments on an os-
cillating airfoil at subsonic speeds. The process is based
on the well known Possio integral equation relating the pres-
sure on the airfoil to the normal velocity.

Part I of the report contains the theoretical develop-
ment which leads to the required equations for determining the
lift and moment.

In Part II the method of Part I is applied to the com-
putation of the aerodynamic lift and moment coefficients for
four principal degrees of freedom of the airfoil, these being:

a. Translation of the complete chord of the airfoil
in a direction normal to the forward velocity (positive down).

b. Rotation of the entire chord about the forward
quarter-chord point (positive for increasing angle of attack).

c. Translation of the portion of the airfoil extending
from an arbitrary point to the trailing edge, in a direction
normal to the forward velocity.

d. Rotation about an arbitrary point of that portion.
of the airfoil extending from that point to the trailing edge.

The appendices contain the detailed mathematical deri-
vation of the various formulae involved in the problem.

PUBLICATION REVIEW

Manuscript Copy of this report has been reviewed and found
satisfactory for publication.

FOR THE COMMANDING (ZNERAL:

"LELI B. WLU
Colonel, USAF
Chief, Flight Research Laboratory
Research Division
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TABLE OF SYNBOLS

.C, ontants

- "Reduced frequency", Wj .V6A where *- is the
frequency of oscillation, b the semichord, and V
the forward velocity.

- Mach n-moer; A VIL where V4 is velocity of
sound.

0 - Air density.

- Parameter defined by Oa

X - Chordwise coordinate, referred to semichord as

unity.

- Chordwise variable of 5Integrat !on.

- Coordinate of control surface leading edge.

w - Parameter defined by W •

z - Variable of integration. Also used in Appendix
VII to designate w,(z-1)

- Variable defined by r -- PSO.

- Variable defined by x= e•s6•

C - Variable defined by e -ea s.

- Coefficient of j(--,r) - in olynomial approxima-
tion of K (of. equation 1.16, .

- Constants defined by equation (A2.03).

- Corntants defined by equation (A2.04)
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r(ca) - Function defined by Kussner; Ta) - • )

(RFuncio defined by Schwartz:.A (6 qp)=ý.Lz p? ' ~ , #
(e .. 2) c $)

21(x) - Pressure distribution across chord.

o- Pressure distribution across chord when
A = 0.

W CX) - Downwash distribution across chord.

K(A ) - Kernel of the Possio integral equation.

,(o•z) - Kernel of the Possio integral equation
when A = 0.

- Non-singular kernel as defined by Schwartz
(Ref. 16).

K(jr) - Non-singular kernel as defined by equation (1.04).

S- Inversion kernel of Kussner as defined, by equation (1.08).

- Function defined by:4(, •-• "'° # ¼fd9

.,.(A4p•,P. F unction defined by jx e,)- e.)- 4 os'a$s

P(A A) " Function defined by
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Functions (continued)

Q*44-e) Coefficients defined by equation (A3.01)

A 6A - Coefficients defined by equation (A3.04)

t(jO e) Function defined by equation (A5.32)

• J" (x) Function defined by equation (1.22)

A c = A~ c-J,(-I)
Z5 (X) Function defined by equation (1.22)

-P ~ Coefficients in series expansion of../, (A6)

CA(•c) -(See equations A4.17, 21, 24, 26)

• (.) Polynomial defined by equation (1.17)

) Function defined by equation (1.18)
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INTRODUCTION

The question of the effect of compressibility on flutter calcu-
lations has been the subject of numerous investigations. The first
approach to the problem was the use of the well known Prandtl-Olauert
correction factor by which the aerodynamic force is increased in the
ratio 1: p where A is the Mach number. Since this correction
changes the magnitude of the aerodynamic force but not the phase, it
is evident that such a correction, while satisfactory for the stationary
case, cannot be relied upon in the non-stationary case where the phase
change is one of the most important factors.

In 1938 Possio (Ref. 11) wrote down the relation between the
pressure distribution over a chordwise element of the airfoil and the
total normal velocity at any point (downwash), taking into account
the compressibility of the medium, in the form of an integral equation
of the first kind which now bears his name. The same equation was de-
rived independently by Kdssner in 1940 (Ref. 4). Since no explicit
solution of the equation was evident (nor has since been found) re-
course to an approximate solution was made. Possio obtained a solution
by assuming that if the equation were satisfied at a finite number of
points on the chord, the results should approximate the exact values.
Using this method, Possio was able to calculate total lift and moment
coefficients for values of the reduced frequency less than .6, and for
motions of the airfoil corresponding to rigid translation and rotation
of the complete chord. Possio's results were later checked and extended
by Fraser and Skan (Ref. 5). This method, now known as the collocation
method, results in a system of linear equations with as many unknowns
as points for which the equation is satisfied. Since the coefficients
in these equations are complex numbers, it is evident that such a solution
is long and tedious if a large range of parameters is to be considered.
Further, it is not possible to duplicate accurately by this method the
conditions of a discontinuous downwash which occurs when a control sur-
face is added to the airfoil.

A different approach to the problem was made by Schade (Ref. 12)
and Eichler (Ref. 13), in which expansions of both sides of the equations
were made in terms of known functions. Schade employed Legendre functions
while lichler used a trigonometric series. By limiting the expansions
to a finite number of terms and equating like coefficients, the problem
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was again reduced to the solution ofea system of linear equations.
Thus this method, while perhaps more accurate than the collocation
method, was still too laborious to be practical. (Schade indicated
that the case of a discontinuous downwash could be handled by the in-
troduction of the proper singularity in the pressure distribution.
He did not, however, present any numerical results for the non-
stationary case).

In 1943 a new departure was made by Dietze (Ref. 3) who noted
that the difference between the kernel of the integral equation In
the compressible case and that of the incompressible case was small
compared to the actual value of the kernel. Thus, using the known in-
compressible solution as a starting point, Dietze was able to compute
by an iterative process the solution to the compressible problew. By
this method Dietze obtained a number of results for the case of con-
trol surface rotation. While the details of Dietze's calculations were
not available to the author, it appears that a large amount of labor would
be required to obtain a complete set of aerodynamic coefficients covering
the range of parameters required for conmentional aircraft.

The present method resembles Dietze's in that the incompressible
solution is used as a starting point. It is, however, not an iterative
process but results in a closed solution based on replacing the non-
singular portion of the kernel by a polynomial. The question of the
rapidity of the convergence of the pressure distribution series is no
longer of any concern, and the only discrepancy between the solution
obtained and the exact solution lies in the difference existing be-
tween the actual kernel remainder and the approximation. The remain-
der is approximated over the required interval by minimizing the total
*mean square' error over the interval. The numerical rea.its indicate
that this approximation is satisfactory even when an apparently large
discrepancy exists between the kernel difference and the polynomial ape-
proximation.
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PART I

BTATZT OF T?1 PROML AM OD CW UOU POU

The problem of determining the lift and moment on an oscillating
airfoil in oompressible subsonic flow ws reduced by Possio to the
solution of an integral equation of the first kind, which relates the
pressre differential over the airfoil chord to the damunuh at any
point on the chord. The equation my be written in the form

(1.01) WTx) dee

where A is the Maoh number, kW(X) is the downwash at aey point, expressed
as a function of the distanoe x (pesitive aft) of the point from the
aid-chord, w0 is the "reduced frequencyO and Zro'•t) is equal to//6y
times the pressure distribution across the chord.

The distances X and t are non-dinsional with the semi-chord
taken as unity. The explicit form of the nucleus /X is given elsewhere
(see for example, App. 7). In the present treatment only the singular-
ities and the numerical values of g are required. As shown in other
investigations of the subject, 4• (Xt.)Jhas the following fwam near 7c E:

(.2 +z• L• a- -. 0

where r has no singularities. For A a O0

(1.03) K q 4( Z ) = 
) t K O x -1

~~(x- ~;C 15 A7ZT 2 t,'ro Gt

Since the solution of equation (1.01) is known for the Incompresslble
case where A a O it is logical to attempt a solution for A;& 0 by
making use of the results already obtained for the incompressible case.
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To this end, the nucleus is written in the form

Clearly, K is non-singular and may be approximated to a good degree
of accuracy by a polynomial. The advantage obtained by the present
treatment lies in the fact that all singularities in the pressure dis-
tribution are taken care of by means of the incompressible solution, and
that the resulting solution is obtained without the use of thp usual
series representation for 4(,). Thus the question of the rapidity of
convergence of such a series does not enter. Further, for low values of
eq , a satisfactory approximation to R is obtained by retaining only
the constant and linear terms of the polynomial.

Placing for K the alternative expression as given by (1.04)

(1 -05)-

According to the work of Kussner (Ref. 1), the solution to the equation

subject to the Kutta condition that Z4)remain finite at I = / is given
by

I

(1.07)

where 2 oAL!,) (0 +J3

(1.-08) A x# Iz 7;iir,6T C&) ~ ' C*coa

x/• z- -TI) -- '-- f-x

- -- -- # )-i0
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Since T(80) a 1 for @ • O this given the additional remit that if

(1.09) _,______ = x)

and 11(1) is finite, then

(1.10) 17: •() J - - z

or, what is equivalent

II z jqLf

It can be seen that if equation (1,05) is rewritten in the forM
F I a(,.1,2) KLOA' Zr, r"drZ44•" -", j--4'- t f[A,, c -4z ..,,,.,

it can be formally regarded as a special ease of equation (1.06) with f(x)
replaced by the entire right side of (1.1.. Thus application of equation
(1.07) given the result

(1.13)

where no (x) L, Z) )W(&)4  is the incompressible preasmre dio.
tribution corresponding to the given downwash U (s). Making use of
equation (1.11) and the following results established in Appendix I.

'-'I1..A) L 5 ,
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(i.1i.)

gives

(1.15)

with ,A

The non-singular nucleus may evidently be approximated to

the desired degree of accuracy by a polynomial of degree yj:

(1.16)

where

1. 17) 52-56 , 60 X & +Q•z- 3 Of, . ,
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The last term in equation (1.15) then becomes

I

with e PJ (;)40" 134L)&~

Equation (1.15) may now be written

i

(1. 19)

This equation may be solved as a differential equetion in -- 44t
by introducing the integrating factor e-&g , viz.

I

At =

M-- -14 -,1- ---, p

ONC IR 52-56 5



Setting X = -1 in the above exypressioniwe obtain a linear equation
relating the (,'a,) unknownsA (, t/,,• •,) , ._- - - =

(1.21) /a)tjrc4 
-3/1 --A- _

where

A 1

_"''I 4XP-kS(ty

(1.22)A
A0t ", >_

Expresuions for these coefficients are obtainable in terms of Bessel
and other known functions (See Appendix I, II, III).

The 7 additional equations required for the complete de-
termination of the unknowns are obtained by multiplying equation (1.19)
by X [it-" ,r .*- -- 7r-#) ] and integrating between the limits -1
and 1. Then since

(1.23) * _____

the following equations result

(1.. '4. B- / -A.
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.. 1

h~ ~ ~tc Z- "V" ;Pit e.Y ,.

The due) equations may be solved simultaneously to determine the quan-\

tities

X:. , -i, - ... ,O2X

The first two of these give directly the lift and mid-chord moment
over the entire chord. In the case of a wing-aileron combination, the
lift on the control surface extending from Mvw X to It - I
is also required, which is found from equation (1.20) after substitution
of the known values for X, 9 X, -.- ,O ,,

The partial mid-chord moment is found in a similar manner by integrating
equation (1.19) from x to 1, with the aid of the relation

(1.25)

yawW~ /X;&56



Equation (1.25) may be applied to a wing-control surface combination by
regarding x as the coordinate of the control surface leading edge, since
the right side is precisely the moment about the leading edge.

The required relations are summarised by the followirg equations:

Total lift on control surface -

//

(1. 26) &- 4,() 0 4XX.-

Total moment about the control surface leadirg edge -

(1.27) PA- , . .. . ,

Where A . (x) and B. (x) designate the respective quantities appearing in
equatioln (1.20); Aqj(x) and Bl(x) denote the corresponding quantities ob-
tained from equation (1.19) by integration from x to 1.

The expressions for the Ai, £ £ 0j" 1,, sJ and
A- ,a, are listed in Table (1.01).. The

various integrals involved are evalued in Appendix I, II, while the evalua-
tion of the Bj is carried out in Appendix III for the following four types
of motion:

a. Translation of the entire chord.

b. Rotation of the entire chord about the forward quarter chord
point.

a. Translation of the control surface.

d. Rotation of the control surface about its leading edge.

.WhD=C , 52-56



For routine calculations the followirg procedure is sug-
gested:

a. Calculation of all quantities which do not depend on
the polynomial approximation. These include the following:

X40 0Dx

and the coefficients of ar in equation (A2.08).

b. Determination of the approximating coefficients 0(, .- ..
as defined by equation (2.03).

a. Calculation of
defined by (A2.05).

d. Calculation of &'1 from equation (A2.03).

e. Calculation of the integrals involving c
from equations (A2.08) - (A2.12).

f. Calculation of , Aij (X) as given in Table (Al.Ol).

g. Solution of the &sic equations (Al.24) to determine the
unknown quantities 1@ . -,-" ..
The first two of these are preportioral respectively to the total lift
and total moment about the mid-chord.

h. Resubstitution of the above quantities into equations
(1.25) and (1.27) to determine the lift and moment over any portion
of the chord.

IADO-.52"56 .



TABLE (1.01)

SUMMARY OF THE COEFFICIENTS .4j j

x *elwo r - T

,IV) " ,.= / 1 .1

Ae- 1(- . -- --- , - -

For the integrals involving j•see Appendix II.

WADO TR.{52-56 10
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PART II

RESULTS OF NUMeICAL CALCUIATIONS

In the present calculations, the lift and moment coefficients have
been calculated for the case where ;k a .7 and co S .5" . Only the
constant and linear terms have been retained in the kernel difference
as defined by equation (1.04). The difference is plotted in figure
(A7.01) as a function of Z a w. c--y , from which it can be
seen that for the imaginary part, a straight line approximation is ade-
quate over the interval f / : z -$ / I corresponding to the range

C a : C-.i . J-1 for the reduced frequency. For the real part,
this approximation is also considered satisfactory since the mgnitude of
this portion over the interval is small compared to the magnitude of the
actual kernel. The line used is that one which gives for 7 the best
approximation in the *least squares" sense, i.e., for each c the' coef-
ficients 0, and C are so determined that

(2.01) %A

is a minimum, where . This condition is satisfied provided

(2.02) -_E -_ = C _?EE _-

which leads for the determination of 4(oand 0(, to the relations

(2.03)4

These equations define O(e and 0(, as continuous functions of W. The
integrations are carried by the procedure described in Appendix VII and
the results are listed in Table (2.01). c(c, and q, are plotted in figures
(A7.02) and (A7.03) as functions of C.

1ADC TER 52-56 11



VALUES O 0 4AND OCI

REAL IMAGINARY REAL IMAGINARY

.05 0 -. 0025331 .000795 -. 0004201

.10 -. 000005 -. 0050791 .OO2J25 -. OO16711

.20 -. 0000o 4 -. 0102771 .006601 -. 0065781

.30 -. 00o161 - .0157031 .010565 -. 0143771

.4o -. ooo453 -. o21•62i .013190 ..0245231

.50 -.001053 -.0276411 .013779 -. 0•363091

M1 22 5,2.56 .1



The next step is the evaluation of the coefficients.. *4,A.,, A,
and 4•, . These are tabulated in Table (2.02) for cow. AP-, ;.- 4#, r

In the evaluation of the 14, the factor M06v times the
non-dimensional amplitude is removed in order to obtain lift and
moment coefficients comparable to those tabulated in reference 6.
Values of these quantities are listed in Table (2.03).

A I 52-56 13



TABLE (2.02)

THE COEFFICI=iTS/ 1 FOR VARIOUS VALUES OF so-

Coooe Ao, ,4;,,.
.05 1.08269+.15000i .006078-.0039301 1.086884+.14789i .005980+ .043966i

.10 1.14694+ .218511 .016659-.014081i 1.159400+.21071i .015933+.0812341

.20 1.21915+.299211 .041736-.0437991 1.25400t.27350i -037(007*.1449371

.30 1.24357+.362711 .07906-.0794841 1.3075801. 314461 .057738+. 2014261

.40 1.23995+ .426641 .106130- .1192251 1.337930+.35374i .079972+.253358i

.50 1.21895+ .494211 .I•9389-.1631191 1.355730#,.396131 .104048+.3006271

VAX W52-.0



TABLZ (2.03)

VALU3ES OFp FOR VARI OUS to Av.

NOTION TRANSLATION ENTIRE CHMD ROTATION ABOO QUARTER CrM

.05 -3.3500-36.46491 -4.2256-36.3604 -733.628+30.522901 -731.933.48.15521

.10 -1.6408-16.76551 -2.4460-16.63841 -170.274-.3 8025 -169.339+7.82161

.20 -. 1762-7.38921 -. 8862-7.27581 -38.0994-6.547901 -37.765-2.844K1

.30 .45113-4.17101 - .1955-4.43311 -15.5592-6.086061 -15.472&63.781581

.40 .77636-3.16621 .1751-3.12491 -8.10142-5.200121 -8.13715-3.562651

.50 .96094-2.39641 .39,72-2.39181 - .I1624-4.43375i -, .88636-3.186081

MOTION CONTROL SURFZCE TRANSLATION CONTROL ETRFACE ROTATION
ee'.wr _________0 .... .... ....... ",,,,7,e ' #. '. g

.05 v2.85070-22.21350 -2.98699-22.U336 -445.28940+49.47210 -443.90690.52.22120

.10 -1.80925-10.22309 -1.90310-10.13279 -102.89650•U.62350 -101.99990+15.59110

.20 - .915826-4.5258U4 - .95319-4.43095 -22.99155+3.04556 '22.50450+3.26170

.30 -. 529040-2.786501 -. 53255-2.69978 -9.51866*. 82165 -9.20616+ .85"3

.40 - .325568-1.979462 -. 30687-1.90305 -5.10957*. 4755 -4.8&799. .12105.

.50 -. 206246-1.523000 -. 17162-1.45655 -3.16595-.09751

1h0. 7R,52-56 15



The equations for the total lift and moment are

(2.04) 4./' ()4# jr ) s ,w-

In order to obtain directly the moment about the quarter chord,
these equations may be re-written in the form

(2.05)

J! t)t+Ai terr

The solution of the above-equations results in values for the
total 3ift and moment coefficients as listed in Table (2.04).

&DC m- 52-56 16



TABUE (2.04)

COFTICIUTS OF TOTAL LIFT AND NOWT
A-.?

CIF -4 h
NOIloI TANSL&TIMV OF liNw Of CHD ROTATION ABOUT QUARTSr CHORD POINT

.05 -10.793-45.7691 1.196-.2441 -927.4*170.321 -4.s3l -38.1681

.10 -5.880-19.4371 1.057-.2791 -201.3# 39.f1. -2.1010-17.86491

.20 -2.361-7.9581 .918-.299i -43.07+4.1471 -. 9635-8.40041

.30 -1.102-4.7891 .842-.3101 -17.91-.8071 -.5962-5.44711

.40 -. 520-3.4141 .788-. 3261 -9.847-1.7871 -. 1A51-4.01281

.50 -. 217-2.6721 .745-.3461 -6.306-1.8931 -. 3783-3.16971

Or e- - -
NOTION ROrATIWci CONlIOL SURFACE 31-TRANSLATIOCOF CONTROL SURFACE

' " z .. . I .. ... . I•

.10 -117.566,40.6061 -59.689-4.90781 .4.4527-1X.60001 .25098-5.97151

.20 -23.733.9.12351 -15.4.2321.96161 -2.1923-A.5886± .1.680-3.08281

.30 -9.3262+3.66041 -7.0532-1.11201 -1.1(13-2.64701 .08426-2.10671

4.8 -4.8473+1.81681 -4.0644-.728L4i -. 96113-1.79381 .04039-1.607481

.50 -2.9295+1.04321 -2.6554-.513461 -. 73411-1.32381i .00645-1.299471

SI OU3@5 52%, 17



-Equations (1.25) and (1.27) may now be employed to oaloulate the
forces and moments on the control smufaoe, after first evaluating the
quantities 40,o(xj A (zz),Ao (Ax), Car'z).0 a V C•x and

C, (x). In the ex•mple, the value x e = - was used. &* bauso
quantities are listed in Tables (2.05) and (2.06) and the results in
Table (2.07).

* Here P. denotes the coordinate of the control surface leading edge in
the notation of Ref. 7.
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TABE~L (2.05)

THE COC)FICIENTTS i" (z) FCI "'aRIwS VALUJ OF do
;c= e-,,,. 7

.05 d .45570+.338401 .03502-.022261

.10 .75200'-.212501 077-C58

.20 .8738-. 2752i 2050-. 23001

.30 .5970-. 67601 .5211-. Z2251

.40 .1105-. 85571 .9039- .70201

.50 -. L518-.7912i 1.L05C-1.1508i

.05 .A4"20+.353301 .03575-.021101

.10 .736A0+.262001 .10200-.0'70901

.20 .9035-.1580i .2932-.19251

.30 .7205-. 54891 .594A-. 3095i

.1.0 .3320- .80831 I1.0567- .43581

.50 -. 1714-.91791 1.7051-.62061
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TABLE (2.06)

VALUE OF l~r Clt VARMMAous tv e'd,t ;Lw.

NOTION TRANSLATION OF ETIRE CHR(W ROTATION ABOUT QUARTE CHCMD POINT

jh. A ',irIle

.05 -. 24617-2.9296921 -. 148238-2.9361891 -59.01179-1.8626651 -58.91258-3.8346381

.10 -. 094170-1.3404631 -. 004521-1.3435981 -13.670495-2.3215861 -13.A8092-3.22843S

.20 -. 042037-. 5988151 .121436- .5875391 -3.123135-1.759751L -2.85663-2.157831

.3U .102201-.3865891 .1?7219-.3579861 -1.356597-1.349293t -1.05645-1.592061

.40 .132741-.2987041 .207MU2- .25342i -. 782840-1.0847471 -. 464CP-1.25272]

.50 .148618-.2569681 .225075-. 1931391 -. 532428- .9049721 -. 20158-1.02931

S... .,-• .

NOTION TRANSIATION OF COMIOL SWFACE ROTATION OF CONIROL SURFACt

700f- - -

.05 -. 317587-6007301 -. 12367-6.044471 -120.9059+3.397501 -120.9469-.484571

.10 -. 224897-2.9380941 -. 03614-2.946421 -29.5092+. 801101 -29.4919-1091751

.20 -. 141457-1.4159481 .040566-1.421901 -7.17947÷, 0050541 -7.11113- .911991

.30 - .104009- .9256521 .074534-.927401 -3.17216-.111181 -3.08145-.714261

.40 -. 084281-.688U761 .092758-.685721 -1.80065-.126511 -1.69822-.577921

.50 -. 073168-.550421 .10368-.543251 -1.17588- .118991 -1.06674-.482371
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TABLE (2.07)

CONTROL SMWAOR LIFT AND MOMENT C 'FICIENTS

Mum

MOTION TRANSLATION (V ETIRE CHCRD ROTATION a£BJT QUARTtM CHaiD POINT

ac , u - /.m ()

.05 -. 29362-2.608891 -. 05339-.509751 -54.342&-.660451 -10.685-.2690781

.10 -. 04530-1.191421 -. 00456-.2329fi -12.02504-2.65942 -2.34h16-.588851

.20 .12209-.51441 .02770-.104161 -2.59931-2.09848i -. 49679-.442901

.30 .17699-.348621 .03820...06842i -1.05165-1.571271 -. 19924 -. 3 28181

.40 .19888-.271531 .04238-.05333i -. 55034-1.235241 -. 10058-.259291

.50 .20 6 6 1-..232361 .04387-.045661 -. 32912-1.007471 -. 05793-.209Af

MOLE~
CFj

MOTIC1 TIU•NSL.TION OF COUTPA)L StFACE ROThTION OF CONTR(OL SURFACE

7 r ,I' * I ? -v'yo
1 A, ,, Y- 1/,, ,,

.05 -. 23729-5.892821 -. 03%C0-.987931 -117.967+1.8400i -19.7773+ .1/3751

.10 -. 08174-2.846521 -. 0O915--474591 -28.522t-.601031 -4.7529-.223731

.20 .0214.5-1.381251 .OlC6-.22922i -6.92832-.80141i -l.IZ727-.20818i

.30 .053103-.913591 .01667-.151551 I -3.05662-. 3643i -. 50/12-.15814i

•40 .064404-.68495i .01572-.11354.i -1. 7 19 13 - .50451 -. 28241- .1235(1

.50 .068,'O5-.543401 .01942-.09C88i -1.1020-.Zl1O72 - .*V004- . .. 007i
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For oemparison, same values of the above coefficients as computed
in Reference 17 from Dietse's original data of Reference 3 are shown in
Table (2.08). The control surface coefficients are somewhat incomplete
and also eortospond to a value of 4! -. 52 so that only a qualitative com-
parison can be rode. However, it appears that reasonably good agreement
exists even for the higher values of a where only a rough approximation
to the actual kernel was used.

In a subsequent repat, an extended range of control surface chords
is to be considered. It is also planned to check the present results for
the higher values of 4 by employing a cubic approximation for •. This
approximation should hold for values of W as high as 1.
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TAML (2.06)

LIFT AiD E•IDNT COWFICINTS CPUTW E FI( DIEM75
,t- .7

.5 -. 21520 - 2.72800J +.8114o - .35860. -6., 24O - 1.94480J -. 39900 - 3.4o76oJ

.4 -. 51688 - 3.45188J *.84081 - .32444, -9.9930 - 1.83750J -.4,3375 - 1.22250J

.3 -1.1o1f - 4.83333J 4 .8739 - .2990J -18.0322 - .84078J -. 55589 - 5.667j

.2 -2.36250 - 7.96500. +0.93050 - 0.2800J -43.15500 + A.U4500j -.89950 - 8.5075oj

.1 -5.89200 -19.41000J +1.05600 - .25200J -201.37000+ 39.69000J :.1.99900 -17,92000J
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UBL1 (2.06)

LIFT AND MOM=T COCMWIC• S COUFUTID FROM DIWZZ

co __ Zie_

.5 - 2.79499 - .42520J - 2.88932 + 1.15560J + .04516 - .03880J

.4 - 4.19739 - .65562J - 4.78622 + 1.9o688J + .04216 - .04562J

.3 - 7.15193 - 1.054"9J - 9.18150 * 3.70666J + .03695 - .05956J

.2 -15.47739 - 1.83875J - 23.24• 4 9.4n50J + 0.02653 -0.09225J

.1 -59.63739 - 4.63400J --15.3A372 * 40.23000J - .00472 .20800J

.5 - .04399 - .20532J - .17621 - .091JS,

.4 - .08201 - .24556J - .26972 - .n35OJ

.3 - .17o06 - .30722J - .A7263 - .1,89J

.2 - 0.2•4 - o.40850j - 1.o6466 - 0.18750J

.1 - 2.09939 - .54100J - 4.38O1 - .20100J
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CON LUSIONS

The method described in this report is suitable for the
computation of compressible, non-stationary, aerodynamic lift and
moment coefficients for values of the reduced frequency less than 1.

The subject method is better adapted to routine computation
than are those previously known.

RIOMA ENDAT IONS

It is recommended that:

1. The results of this report be extended by the method described
therein to cover a larger range of values of the control surface
chord.

2. The accuracy of the linear approximation for the value .5 of the
reduced frequency be checked using a cubic approximation, for the
nuclear difference.

3. Calculations be made using the cubic approximation for values of
the reduced frequency between .5 and 1.0.
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EVALUAT!ON CF CERTAIN INTECRAL5

The relation as stated in equation (1.13) is

(Al.Ol)

Schwartz (Ref. 2) has estaUished the validity of the inter-
charge of the order of integration in the double integral above, and other
integrals of this type; thus

(Al 0". t J-• el, Z , Z-

Now becomes upon setting 7 eos9 ,cv-e- sP

(Al.O3) (id+oof) 5,.,p,,, C/
The above integral is of the Cauchy "principal-value" type, and it is well
known that

(AI.O4) / 4.

,O-S'p- Cos&'
Thus

I

(Al.05) ±1 LL dZ 7r~d

B. Proof of Eouation (1l.4)

The relation to be proved is

X&AD 0 52-56 28



Designating the right side by Af). then since (Ref. 2, Equation 62)

(Al. 07) ct*.5 -

ZZ". Uý -- I -- t

/+ 7 ~ -
(_l-..) L+Z ~~r~d~//_ /. d.~

I~Z7-Z. 4 Z-

By equations (1.11) and (A1.05)

(AI.09) 7r 4 )d 4

Further .&Jft, t.) = 0 so that 9Ci )= 0. Therefore

(Al. 10) a )d0 Ijlt

or

C. Avaglion of the Inter~a "
/X I+L

Set a co. e, ? X c*f Then

(Al.12) 29
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The function

(AI.13) C lt# '

is designated by- 4 A ). Properties of this function are discussed fur.
ther in Appendix IV. Thus

4A

For Xa-' , since ( (A,-r)= v•'(ij) ), this gives

il/ /1 1.

D. Evaluation of-the inteeral e

Making the change of variables: = , CO # r CDSF- , O

Integrating by parts, with

whence

• . , , ' ' n .
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and for2( -I

Z. Evaluation of the Integral / 7 C'dE

By the usual change of variables,

A_ ri(4)~ -4 (i,•1j
But equation (4.07)

(Al.20) e.Of/4 (,-xclu
.,Threifore,~-

adf

(,l*.21) 4 T- ,Z[-

F. Evaluatton of the tntegral

(Al,22) e C4

MDO.l ?R25 3



Integrating by parts with

da-c sm DJ~f2~i&4 dri~i

gives

(A=.23) e- sifx P Ox i0)ip Cos

-q9* -Ct 1-AS)

T herefore

(Li .24)/iize LXfr(4ct)Xvre

and if 2(=/
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TAL.W 01TABLE (A1.o1)

VA1J7SVAUE OF 1  ~ kd

40 2~C C 40 e
S.1811722-01 .0 .0

.05 .1810678-.00604781 .05 .000552+.0164401

.10 .1807542-.01208831 .10 .002206+.032823i

.20 .1795027-.02411681 .20 .008801+.0651881

.30 .1774241-.03602641 .30 .019721+.0966381
.40 .1745291-.04775821 .40 .034855+ .1207281
.50 .1708338-.05925471 .50 .054053+.155022i

VAXZ& 0F47 A-fjjoVAU

.0 .3070925 0 .0 • .2165064-0i

.05 .3069102-. 01039861 .05 .2163671-. 00758761

.10 .3063637-.02078401 .10 .2159580-.0151&21

.20 .3041812-l.04146251 .20 .2143126-.0302z271

.30 .3005572-.06193071 .30 .2115818-.01,51616i

.40 .2955115-.08208511 .40 .2077791-.0598393i

.50 .2890695-.10182261 .50 .2029216-.(07418731
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E9VALUATIO. N/r i

By definition(equation (1.18))

(A2.01) ( z•PcxIx) a ( z V It o

According to KAssner (Ref. I), this expression may be written as

with -Xt--COC#D ,where

(A2.o3)

and &,b [ =-*s 7 has the form

(A2.o04) -.

Expressions for the VFs in terms of the coefficients .QC may be found by
converting the powers of coef into cosines of multiples of * For

(A2.05) t oa

I 34
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Finally,

(A2.06)

Since Ce 0(Sf/ý'~) and since by

equation (A4.07-)

-te

it follows that

cat~

. I

For X-I this gives
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ILfLW- we obtain

and for o [ r-]&o.it

Similarly,

(A2.12) v~L~ [zao 4 (4M#"J etc.
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EqATUATION OF 664 ac

for pr-actical purposes the above integr•ls must be evaluated for
four types of motions, these are:

1. Translation of the entire chord.
2. Rotation of the entire chord about the forward quarterchord point.
3. Translation of the control surface.
4. Rotation of the control surface.

It has been shown by Kussner (Ref. 1) that in each of thd first
two cases, the preseure distribution_-.C)is'expressible in the form

whereA is the non-dimensional amplitude of the motion and theq'are func-
tions only of the reduced frequency, as given in Table A.3.O1 . Thus the
evaluation of / e "'*Jr , )d c is in these cases reduced to the de-

X
termination of the integrals

(A3.02) 1 L ,,7 t.

These have already been shown in Appendix I t6 be respectively

j,,f7 ,+d. -= ~ L'AV, X)- eA%,•<I",
UM '152 256 5



In the last two casep the incompressible pressure distribution consists of
terms of the above type and additional terms of the form

(A3.04) 7?be -" P..)A(It I) 0 X

where t is the coordinate of the control surface leading edge. The in-
tegral

/

(A3.05) X, _ X 7A a e l

is discussed in Appendix V. Thus the general expressiovg for• become as
follows:

77Cos 
Mir_

+o4 Jxe-', -,,x jc
.A- rr38

Tr 7T IT
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where the L and A are listed in Table A (3.01) for the f or types of
motion to be considered.

It is noted that for airfoils with a single control surface it is
necessary to consider only the case where x = e.

The integrals B(C)W•/•C1c• t, A•e6c) . are.

already knov,, being respectively the incompressible lift over the portion
of the airfoil extending from x= e to x= 1, and the total incompressible
moment about the midchord. In the notation of Reference 6. these are:

(1) ,e). r' .1) ? r(-,)e Ir Y /A

(C) ho ,,,•',ldp Cc) 1 *, 1 -,,1) 7r/,,",V ez

(u) 3.•,( .fo,'b'•'2 )7[e), - ') l ,Jd(~(A3.08)

WADC TR 52-56 .9



The relations (A3.08) are useful as checks on the computation of -g oW)
since z e

For the evaluation of y the following integrals are needed:

•' t S) Ed , - "'E) /J -~ e)

These are found to be respectively:
I I

-af

(A3.09) IJ .

Thus

UMD IR -2-56 140



'4I

H ~ I 0

--IP

0 0S

orH

4%4)

4.3.

o-to
e.,l

c~~j 4-)~j~ I

'01 11
C.)a a

m. 43* +3 1% 4-4

4) 0 - 41 4
10 4 4

Eh 04 0.P
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THE FUNCTION

By definition

a. special Values -

The function is seen to possess the following limiting

values:

where is the Lommel-Weber function of order W;

'I9

b. Differential Relations -

By differentiatioh of equation (A4.01)

WADO TR 52-56 42



C7-

-J &AF C"°*[- e,. . * + Mo, QIJ 4, "

Or,

(A4.05)

In particular, for 7. C'

(A4.o6) --"

c. Recurrenoe or.ulae-

Integration 0 kuation (A.01) by parts given

(A4.07•

or

UM 1352-56 43



d. The Differential Equation Batisfied By )

Differentiation of (AM.05). together with suoessiee ap.

plications of equations (Ui.05), together with successive applications

of equations (A.05) and (A.08), shows that Vw) e) satis.

fie# the differential equations

.(A0) / ae0D

In particular, 0 D) is a solution of

4 W-(A4,10) ALI -A4Ag;k1

.. pasion of k*e) and an Power
Series in eosJ

It has already been shown that Ie *) is a solution

of the eauation

A~~# co Oj44Ej

It follows that 4,4N&) can be written in the foar

aM U •3.256



where4&)_@atisfies the equation

(1M# 3) A L Ili ,4  A ,1*

and it if essily slaown that a solution of this equation is

TheA satisfies the recurrence relation

with the following initial values

(A4.16)

where Fis the Weber function of order zero.

As a check on the computation of the A'sP the following relations

are u•eftl:

__ .* k4AlJ) cos()

,,f (A Aa A)& A(()
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Further, si nee 4 (v9apjz t and '4 A.() C it rollcmwu

that = and Ain9' isquation (A.12). ThvA, tfinally

, 40 R coj*0

Separating real and imaginary parts,

J0,7-J'fA) CO4g -

(A4.19) I0 aft

(A4.20) *

~ Co v

where

(4.23.) JA $t)41;l* *)' t '&

For ,ý / (-i d) may be found from the relation

(A44.22)(
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However, if.A _!/ 1 this formula my be subject to considerable error

unless the lower order functions are carried to many more plces than is

required in the finas results. in such cases it may be preferable to

employ the following type of expansions obtained by applying Equation

(M4.05). Thus ford XAP

(A4.23) AV Car~~[ A*-.

with

(A4.24)rAu fw lf t ___ __

AO 7~t4 OIX (*4 3) LIE

Similarly,

with

(A_.26 Cie.i 6 LgM
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VALUE cv.4? 0, eo_)

A .. , 7 ,4s , A ..

.0 1.04'71976 -0i .8660254 - Oi

.05 1.0463437 -. 04159111 .8652759 -. 0355%331

. I0 1.04 37836 -. 08311041 .8630294 -. 07102211

.20 1.03356*7 -. 16564581 .8540640 -. U15290!

.30 1.0166208 -. 24703561 .8391967 -. 21100921

.40 .9930688 -. 32671781 .8185397 -. 27895961

.50 .963C815 -.. 0414291 .7922477 -. 3488821

.0 .4330127 - 01 0 - oi

.05 .4325233 -.02079391 -. 0001923 -,0051931i

.10 .4310562 -.004154251 -. 0008026 -. 01336541

.20 .4252043 -. 08272081 -. 0031865 -ý020558ii

,30 .4155065 -. 12317431 -. 0071306 -. 03036301

.40 .4020419 -. 16254761 -. 0125766 -. 03960251

.50 .384925 -. 2001*971 -. 0194387 -. 04813901
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THE IFUNCTION

a. Recurrence Relationships

By definition

(A5.01) )jx a d7,(~

whence

or

(A5.03) (e~x 7

b. Value of 1o(Aze)

Setting x-eosO, PCw.tost , ,--•os , in (A5.01), we have,

for :=O,

£4cos•.,. / ••t -Co$,~)

(A5.04) ,*(e $iXCs Q )SAq t,

Since (Ref. 1),

C•S ,, '-Cos.C
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integration of (A5.03) by parts gives

(A5.05) _____AA___________

Introducing the notation

(A5.06) r'(,&" #.€ =!ct -o

gives

The function /Y,*,,JE) is discussed further in Section f. of this Appendix.

For the present it is sufficient to note that

Thus since A'(O e

(A5.09) X

o. Value of -2A4&, ;e)
By (A5.03)

4 x- ,COSE

I&ADO 1152-56 5



But also from (A5.07).and (A5.08)

(A5,.1)A i ýýj=Z )e&O o )4x e- .1j

Thus

(A5.12) ftct;eCJ

or

(A5 .13) ~4 ~* ,)~ a ~)+reA('',ci- ~ -i

d. Value of1(x)

Differentiation of (A5.12) gives

~-f' AC•dcdofie ..r . .s e,- • . .

and, applying (A5.03)

.. Core LAeosd

(A5 1A5)S6~vD elUE

IM DO 52..56 2



(A5.16)p

or

(A5.17) Z,.C I -•c' ,-.A f e' Co•--e _"X))

e. Special Values -

For x a -1.t z9 =7 and the following expressions result:

(A5.18) L•Ao ( ,)• ••(Ae, i- Joa

and for/ eiiae ,ro a. )A69, e

WADC Ut 52-56 52 /J/ac')



The following limiting values may also be deduced:

(A5.20) ,x e)- i-e)L - tole)A.•-

i•••,,--[-'r -e> V-k, CIL)eo

f. Properties of the function /(.•. . 6)

It has already been noted (Equation A5.09) that

or

(A5.21) /1 ,1 :

Now from Equation (A3.09)

Multiplying both sides by (-- and integrating,

(A5. 1.22) Yd A
1-_ , .o . ,• _- o
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The left side after several integrations by parts may be redumed to:

and the right side beoomes

es,- 1 -•€,

(A5.23) A

Thus

(A5.24)

--.. l e,1 o) I+

ors

(A5 .25)

".[Aees/j-( " ) +
Integrating,. 46 4A

(A5.26) -
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If s=iT" , this glves

(A5.28) i ( ) = AV C

and if t9=of

(A5.30) "Ilfo(ilo, ,-, ,, 6.,,,,a, l

Since a ,~ ud d;A 4C are oomplex conjugates, the. above
relation gives only ,the imaginary part of glT(s ,)., Equations (A5.277)
and (A5.30), while of little value for-direct computation, are useful as
numerical checks on results obtained from other methods.

g. Expansion of as a power series in A.

.By definition, )c.s--c,,)
- A

/74., 16.S

Expanding the numerator,

Then with the notatioin
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0*

(A5.32) Z r,)d4 *~

The n may be computed successively from the following recurrence re-
lationship:

(A5.34,) fo,-eO

starting with the initial values

(A5.35) , ) = ? '6 Y ) YM )= ,,v -

In part icular,

(A5.36) ZC6Z &C) "- 1) (A I o$slJ (6)6

Sin C0 S 0 9Pand since

converges if 0<f14 - so also does -q (7•r , or,

Thus the series for /CY, , 616 converges more rapidly if C

since for £
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and although the series 2 L AL 17* 66 1 still converges,
the convergence is poorer if 1/7 4 F C T . In this case
the following relation is useful:

(A5.37) Zr7Jý6,T-d = £j

WADC TR 52-56 57



TABLE (A5. 01) - VALWASOFe e

c-o -e:

0 1.0471976 -0 3.1415927 +01
.05 1.0471453 -. 00822471 3.1406858 +.03771721
.10 1.0469886 -. 016"4781 3.1379702 +.07535831
.20 1.0463617 -. 03288271 3.1271345 +.15010861
.30 1.0453176 -. 04929191 3.1091812 +.22365061
.40 1.0438574 -. 06566261 3.0842665 *.2953961i

TABLE (A5.02) - VALUJS OF (.O. e ',S•

O0 .906899 - 01 2.7206991 -. 01
.05 .9064218 -. 02890091 2.719914Q -. 03267031
.10 .9049887 -. 05776911 2.7175606 -. 06531241
.20 .8992647 -. 11527591 2.7081584 -. 13139871
.30 .8897558 -. 17225991 2.6925324 -. 19503421
.40 .8765085 -. 22846291 2.6707474 -. 25899641
.50 .8595872 -. 28363111 2.6428903 -. 32206481

- IC-- --,

ILE (A5.03) - v=.U.s oF : ( z,,); e -
'4, ... q

0 .148275 - 1 -. 6801747 -. 01
.05 .1481707 -. 0054,4561 -. 6800759 .01633251
.10 .1478647 -. 01088281 -. 6797823 -. 03264941
.20 .1466385 -. 02169951 -. 6786053 -. 06513691
.30 .1146013 -. 03239161 -. 6766493 :.16009921
.40 .1417670 -. 04289651 -. 6739193 .12902191
.50 .1381515 -. 05315281 -. 6704206 -. 16009921

TArLE (A5.04) -vk~uz o, -z:;(, x co; e~-.s
i Z = q, -xa-/

0 .0392250 - O0 .6801747 * 01
.05 .0391520 -. 001468i .6799926 *.01221711
.10 .0390673 -. 00307551 .6791402 •. 02448631
.20 .C387291 -. 00615881 .6761256 +.04886W21
.30 .0381164 -. 00918211 .6710323 +.07305561
.40 .0372615 -. 01214941 .6639488 +.09694481
.50 .0361732 -. 01503541 .6549Z72 *.1204249i
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ALIaNDIX VI

A DIRIVATION Of THS INVEiSION YOUMULTA FOR THE SUATIONfxu'. .1 z d

In the following demonstration it is necessary to recall the fol-
lowing:•/•r 4 -

(A6.0l) IrfdCe =.0/.tes q- ,o

where the symbolfdenotes the Cauchy principal value, i.e.

(A6.02) J4L. 'lift ?j/4

From this result it is easy to obtain by induction the following:

(A6.o3B) J cs -oe =v .-

B. Solution of the eauation

The. equation to be solved is
I

(A6.04) fe)= # f-tS

Making the substitution z: eoSJ*, t = c" & in(A6.04)

(A6.05) fJ~~ L 1  r~ecos4f) -VC off94
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Now assume a solution of (A6.05) of the form

(A6.06) z"e'ZC*$P) -"Zce•Cose•eo O).
o

Then with the aid of equation (A6.03A),

(A6.07) JihOJ,,,"/4.sP) W 2 a. en (n'ot)
I

Multiplying both sides by _ ¢o 1 and integratIrT with respect tc 6,

(A6.08) 0'rher0 f -'

"S - esV$' COS',9- COS Cf

Or, from (A6.03B)

(k6"C• 64A's n a C, Cos (XIO)
rip ,,.7cc.,.b Sc,#- a,.J

Returning to the original variables x and 29

I

(A6.DC) TR d. 60

or, interchanging x and

WMTR fl~52-56 6o



It is noted that (A6.11) still contains the ndetermined constant so, the
presence of which may be attributed to equation (A6.01) which renders
this quantity arbitrary. Thus a. is analogous to a constant of integra-
tion in a differential equation and additional oonditlo must be imposed
to determine it.

In thin airfoil theory where equation (A6.04) relates the downswA f(k)
to the pressure distribution re(r), the lutta condition requires that a
finite pressure exist at the trailing edge, x a 1. It is clear from in-
speotion of (A6.11) that the only value of as for which this is possible
is that one given by

(A6.12)

Replacing so in equation (A6.l1) by the above value and re-arranging given

(A6.) X " " 52-66
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A ENDIX VII

M .. _ EL, r S PPR I R A"T•ON AS A RQLYWI[MA

1. Kussner (Ref. 4) gives for the kernel of the lossio integral
equation the following expression:

(A7.01) KaZ) MV __e~v"~

where & ).) C & (,aiv $ an=dArare the Bessel and Neumann

functions of order unity in corventional notation.

The integral is only roperly convergent when 2 <0, in which case

e" z tO too

(A7.02) K(A, -Ae) e-,
In the case where foit is necessary to form the Cauchy principal value under
the integral sign In equation (l.Ol),whence It is found that

W-0.3) z___ it]'

By making uce of the followin6 identities which aire easi~ly proved by dif-
ferentiation:

(A7.0.4) .

the follcwing expanded forms of the lossio kernel are obtained:
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ALA

(A7.05)

where Z.--and w A Since

I1-Am

the last integral in each expression may be written as

(A7.07) 47 N * ( 4. t

the latter form being more suitable for numerical comIutation. For )= 0
it may be shown that

(07)?8) 7- 'z/ "^Z • -

where C - .577216 , known as Buler's constant, is defined as

WA.09) r? +

2. The singularities of K(AAz)
It is well known that as X-.o Al. (x) becomes infinite as log lxf

and N as a . Thus in the vicinity of x = C,
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AA7;4O =-L :.Pi4non-Psingular terms(A?.10)

h z (x)~ h� - -- � f'• lo•-singu•ar terms

Fukther, it is clear from the expanded form that these are the
only singular terms. Affixing the proper coefficients to these terms

as determined by equation (A7.05) gives

(A7.11) p( z) - ) = )

where K/44Z) has no singularities. In Ref. 16 Schwartz has tabulated
the values of / i>,Z) for ' 0 -. 0 in intervals of .1 and for

x -- tI-A') t x = zwaIA*) in intervals of (.02). Later in Ref. 17
the range of //I for -w.? was extended to 5.1; for A = .8 and .9 to 2.00.

The singularitles of K(&PZ)are, from (A7.11) given by

It follows that the difference

is also non-singular. The real ant imaginary parts of; are plotted in

figure (A7.O1) as functions of %for A P.7.

2. Representation of K 4) as a polynomial.

Since R has singular derivatives atZ = 0, it is'not possible to
represent it by a Taylor series expansion about this point. Furtler, even
if Puch an expansion were possible, the retention of a finite number of
terms would give a good apirox~mption only for small values of 1, and more
terms would be needed, the larger the X range became. The range over which
the value of X extends is evidently -,tto *wosince Za-&&oj)and 2 and Z •
each have the renge Tl to 1. It, therefore, appears that a more systematic scheme
would be to obtain forK a representation such that over any arbitrarily
chosen intervrl, the difference between the actual value and the approxi-
mate value were made as small ss possible. One means of accomplishing this
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is to represent K over (say) the interval•-a to alby Legendre polynomials:

The first few Legendre polynomials are:

(A7.15)

The general expression for ?.Vr) may be found in numerous sources (for
example, Refs. 14 and 15). In Ref. 15 it is shown that the coefficients
,4n may be determined from

(A7.16) An = (2)PV(%)cc

It can also be shown that with this representation~the mean square error,
viz. • --

(A7.17) :E('X)/Q -= X 3: ;P

"is made a minimum. It is further noted that since 4-J equation (A7.16)
.defines the A. as continuous functions of the reduced frequency, W .

3. Evaluation of A4
Since ?t (NO) is a polynomial of degree '?z in R , the evnlu-

ation of the A4 is reduced to the evaluetion of ihtegrals of the form

(A7.1 8)

For 0•--• the value of the integral is defined as the Cauchy principal
value, i. e.
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(A7. 19) J A -)dz m /i az)-[5 5dZ

a,

The evaluation of the required integrals is easy for the case when A o,
since by differentiation of equation (A7.08),

(A7.20)

and so

"(A7.21) {a " a + i)4f/IJ ý/'J -.

(A7,22) A

A(Oetz) 7A'! W fZ 5~ r) to,(,imJ Z)/' (edz

• 1 i , I I i i ! i

For ?iJOP, the expressions become more cumbersome. It is found after sons
calculation that

('4SAc , M~cdj
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For n 0 the integrals my be found by a recurrence relationship sim-
ilar to (A7.22). The last integral constitutes the only u nown
functions, but it can be shown by a process similar to that used in
Appendix V, Section f that

A'ci e d-A5-JrA41
-' .1 t •&O

In view of the complexity of the expressions involved in the integration
of /((a Zý v the following alternative method was employed to obtain
the results in the example of Part II of the reports In Reference 3.
Dietze gives the following approximate expression for

where bJ(Az)is a small regular remainder, the absolute value of which Is
never greater than (.2) in the range -2 •Z 4 2. For-1 X !9 l, the
absolute value of 5 is less than (.007). *I--1I4s and are explicit
functions of k which are listed by Diet:e of Page 26 of the reference
above and are reproduced in Table (7.01). The numerical values of

*W -• - are also given here for A - .3v .4, .5, .6p,.7.

Since 6 is small, the error introduced by eaploying an approximate
quadrature formula such as Simpson's rule will be negligible, while the
remainder of the terms involve only simple functions which can at once be
integrated. Using this method the value of

was calculated forA - .7, and a - .l, .2, .3, .4, .5# .6, .7, .*, .9,
1.0. From these results the values of 44 W and as listed in Table
(2.01) were obtained.
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TABLE (A7.01)
(Reproduced from Reference 3)

IAhK(A, Z)-/ 7.1

=o- )

4vp 7I 7.~)7, z)Y 2 kaIsC nstn

a '00,3 0•,, 0., '6 Q,7

+103k'22 0,0195 A,0872 0,3274 1,1i11 4,7319

+103k'23 -0,0032 -0,0237 -0,1197 -0,4493 -2,8593

+ 1Ok'24 0,e067 6,n021 -0,0047 -0,1054 -1,2l14
+I0•k' 2 5  -0,0075 0,0- Qz2 0,0394 0,3473 3, 183

+iC.k'26 -0.0013 0,0004 0,0033 0, 0161 0,2452

+i0•.k'2 7  G., 0039 -0,0C55 -0,0409 -0,11,68 -1,5321

+1+1k'28 -0-0003 -O,0C07 -OC016 -0,C0043 -0,0274
+10O.k'29 -0,0004 0,0ll 0,0070 0,0238 0 2539

1 2 0,0419 0,1698 0,5484 1,6217 4,9165
+ C•.k'23 -0,0026 0,0137 0,0745 0,4830 2,2234
+102.k''24 -0,0206 -0,1266 -0,469Z. -1,5931 -6,5805

+10.k''25 0,0059 -0,0189 -0,0536 -0,3839 0,2119
+0I.k" 26 0,0078 0,0553 0,2091 0,7325 3,0056

+!0 2k* 27 -0,0034 0,0119 0,0254 0,2153 -0,3L64
4lO.0k" 28 -0,0011 -0,0086 -C,0326 -0,2-84 -0,4719
+ l.k" 29 0,0006 -0,0021 -0 -0,0363 0,0677
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APPENDIX VIII

AUXILIARY TABLES,

TABLE (A8.01)
THE FUNCTION 771') (REF. 1)

.05 .818018- .2612891

.10 .663848- .3446041
.20 .455160-.3772481
.30 .329942- .3586381
.40 .249952-. 3299681
.50 .195872- .3014191

TABLE (A8.02)

e-.,s-, A .7

',4e

.05 .0480392 .9997115+ .02401731

.10 .0960784 .9988460+.0480211

.20 .1921569 .9953880+.0959311

.30 .2882353 .9896330+.1436191

.40 .3843137 .9815950+.1909771

.50 .4803922 .9712910+o.2378931
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TABLE (A8.o3)

.05 .9994231 .0240127 .000288

.10 .9976935 .0479838 .001153

.20 .9907902 .0956357 .004602

.30 .9793377 .1426262 .010313
.40 .9634151 .1886311 .018241
".50 .9431326 .2333334 .028282
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